10.10 Take unconditional expectation on both sides of (10.41):

$$\mathbf{E}_0\left[X_t\right] = \frac{\alpha}{\beta} + \left(X_0 - \frac{\alpha}{\beta}\right) \mathbf{e}^{-\beta t} + \sigma \mathbf{e}^{-\beta t} \mathbf{E}_0\left[\int_0^t \mathbf{e}^{\beta s} \mathrm{d}B_s\right].$$

By the law of iterated expectations we can write,

$$\mathbf{E}_{0}\left[\int_{0}^{t} \mathbf{e}^{\beta s} \mathrm{d}B_{s}\right] = \mathbf{E}_{0}\left[\int_{0}^{t} \mathbf{e}^{\beta s} \mathbf{E}_{s}\left[\mathrm{d}B_{s}\right]\right] = 0,$$

and consequently we obtain

$$\mathbf{E}_{0}\left[X_{t}\right] = \frac{\alpha}{\beta} + \left(X_{0} - \frac{\alpha}{\beta}\right) \mathbf{e}^{-\beta t}$$

This reveals that the long-run mean of the process is $\frac{\alpha}{\beta}$ and the rate of mean reversion is β (assuming $\beta > 0$). Figure 1 shows the expected value of the process as a function of the time distance for $\alpha = \beta = 1$ and $X_0 = 1 \pm 1$.

Figure 1: $E_0[X_t]$ as a function of t. Starting values of X_0 are $\mu + 1$ and $\mu - 1$ where $\mu = 1$ is the long run mean.