# Simplified stochastic calculus with examples for students 

Aleš Černý

Bayes Business School

LMU Spring Workshop on Finance, Stochastics, and Statistics Munich, 28 April 2023

## Outline

- Simplified calculus from several perspectives
- As a recipe for obtaining new formulae
- As a useful shorthand
- As a tool for practical calculations
- As an algorithmic device
- As a pedagogical tool
- Will touch upon

园 Émery, M. (1978). Stabilité des solutions des équations différentielles stochastiques application aux intégrales multiplicatives stochastiques. Probab. Theory Related Fields 41(3), 241-262.
Farr, P. and R. Lee (2013). Variation and share-weighted variation swaps on time-changed Lévy processes. Finance Stoch. 17(4), 685-716.

Based on a series of joint works with Johannes Ruf（LSE Math．）
－Intro for readers familiar with $\mathrm{d} t, \mathrm{~d} W, \mathrm{~d} N$ calculus
图 Simplified stochastic calculus with applications in Economics and Finance，European J．Oper．Res．293（2），2021，547－560， ssrn：3500384．
2．Appendix on affine Riccati equations à la Duffie，Pan，and Singleton， ssrn： 3752072.
－Theory at the level of Jacod and Shiryaev
圊 Pure－jump semimartingales．Bernoulli 27（4），2021，2624－2648， arXiv：1909．03020．
（ Simplified stochastic calculus via semimartingale representations． Electron．J．Probab．27，2022，paper no．3，ssrn：3633638．
图 Simplified calculus for semimartingales：Multiplicative compensators and changes of measure．To appear in Stochastic Process．Appl．， ssrn： 3633622.
－Slides available from www．martingales．sk

## Plan of the talk

- The Émery formula and drift calculation
- Samuelson's insight into geometric Brownian motion
- Generalized Yor formula (aka returns on NASDAQ ${ }^{\eta}$ )
- A plethora of applications
- The calculus in a nutshell
- NOTATION REMARK:
- We will encounter specific functions, such as
- $x \mapsto x^{2}$
- $x \mapsto \mathrm{e}^{\mathrm{x}}-1$
- $x \mapsto \log (1+x)$, etc.
- The corresponding "function handles" will read
- id $^{2}$
- $e^{\text {id }}-1$
- $\log (1+i d)$, etc.


## Émery formula

Simplified Stochastic Calculus
A. Černý

Bayes Business School

## Outline

Émery formula
Drift calculation
Samuelson's insight

Yor formula, etc
Applications
The calculus in a nutshell

Key properties

## Better jump

integral
Pedagogical
opportunities
Final quotes
References

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}^{c}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}\left[X^{c}, X^{c}\right]_{t}+\xi\left(\Delta X_{t}\right)
$$

## Émery formula

Simplified Stochastic Calculus
A. Černý

Bayes Business School

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}^{c}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}\left[X^{c}, X^{c}\right]_{t}+\xi\left(\Delta X_{t}\right)
$$

- Now make the formula universal


## Émery formula

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}^{c}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}\left[X^{c}, X^{c}\right]_{t}+\xi\left(\Delta X_{t}\right)
$$

- Now make the formula universal
- reinterpret continuous quadratic covariation


## Émery formula

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}^{c}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}[X, X]_{t}^{c} \quad+\xi\left(\Delta X_{t}\right)
$$

- Now make the formula universal
- reinterpret continuous quadratic covariation


## Émery formula

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}^{c}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}[X, X]_{t}^{c} \quad+\xi\left(\Delta X_{t}\right)
$$

- Now make the formula universal
- reinterpret continuous quadratic covariation
- add jumps to the first term and subtract them in the last term


## Émery formula

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}[X, X]_{t}^{c} \quad+\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t}
$$

- Now make the formula universal
- reinterpret continuous quadratic covariation
- add jumps to the first term and subtract them in the last term


## Émery formula

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}[X, X]_{t}^{c} \quad+\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t}
$$

- Now make the formula universal
- reinterpret continuous quadratic covariation
- add jumps to the first term and subtract them in the last term
- Denote the resulting process started at 0 by $\xi \circ X \equiv \int_{0}^{r} \xi\left(\mathrm{~d} X_{t}\right)$

$$
\xi \circ X=\xi^{\prime}(0) \cdot X+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t}\right)
$$

## Émery formula

- Semimartingale $X$ ( $\mathbb{R}$-valued for now)
- Function $\xi: \mathbb{R} \rightarrow \mathbb{R}$ in $\mathcal{C}^{2}$ with $\xi(0)=0$
- Want to formalize a process with increment $\xi\left(\mathrm{d} X_{t}\right)$
- Suppose $X$ has jumps of finite variation
- Continuous part $\mathrm{d} X^{c}:=\mathrm{d} X-\Delta X$

$$
\xi\left(\mathrm{d} X_{t}\right)=\xi^{\prime}(0) \mathrm{d} X_{t}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{d}[X, X]_{t}^{c} \quad+\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t}
$$

- Now make the formula universal
- reinterpret continuous quadratic covariation
- add jumps to the first term and subtract them in the last term
- Denote the resulting process started at 0 by $\xi \circ X \equiv \int_{0}^{*} \xi\left(\mathrm{~d} X_{t}\right)$

$$
\xi \circ X=\xi^{\prime}(0) \cdot X+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t}\right)
$$

- Examples coming soon (in three slides)


## Émery formula II

Simplified
Stochastic
Calculus
A. Černý

Bayes Business School

Outline
Émery formula
Drift calculation
Samuelson's insight

Yor formula, etc
Applications
The calculus in a nutshell

Key properties
Better jump integral

Pedagogical opportunities Final quotes

- Émery (1978) showed

$$
\sum_{n \in \mathbb{N}} \xi\left(X^{t_{n}}-X^{t_{n-1}}\right) \xrightarrow{\text { u.c.p. }} \xi \circ X
$$

as the time partition $\left(t_{n}\right)_{n \in \mathbb{N}}$ becomes finer

- Hence $\xi \circ X=\int_{0}^{0} \xi\left(\mathrm{~d} X_{t}\right)$ is a $\xi$-variation of $X$ !
- This result and Émery's $\xi\left(\mathrm{d} X_{t}\right)$ notation got lost somehow
- "G-variation" in Carr \& Lee (2013) is the same concept but it cites Jacod (2008), who only proves convergence in Skorokhod topology

Definition 2.2 ( $G$-variation) For $G \in \mathbb{V}(Y)$, define the $G$-variation of $Y$ to be

$$
\begin{gather*}
G \circ Y \\
V_{t}^{Y, G}:=\alpha_{G} \mathrm{TV}^{\left(Y \mathrm{~d}^{\mathrm{d}}\right)}++\beta_{G}\left(Y_{t}-Y_{0}\right)+\underline{\gamma_{G}\left[Y^{\mathrm{c}}\right]_{t}}+\sum_{0<s \leq t}\left(G\left(\Delta Y_{s}\right)-\beta_{G} \Delta Y_{s}\right), \tag{2.8}
\end{gather*}
$$

## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Emery formula
Drift calculation
Samuelson's insight

Yor formula, etc
Applications
The calculus in a nutshell

Key properties

## Better jump

integral
Pedagogical
opportunities
Final quotes
References

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X^{c}+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot} \xi\left(\Delta X_{t}\right)
$$

- Add and subtract only small jumps indicated by $h$


## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Emery formula
Drift calculation
Samuelson's insight Yor formula, etc Applications

The calculus in a nutshell

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X[h]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) h\left(\Delta X_{t}\right)\right)
$$

- Add and subtract only small jumps indicated by $h$


## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Émery formula
Drift calculation
Samuelson's insight Yor formula, etc Applications

The calculus in a nutshell

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X[h]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) h\left(\Delta X_{t}\right)\right)
$$

- Add and subtract only small jumps indicated by $h$
- Émery formula represents a spectrum of equivalent expressions



## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Émery formula
Drift calculation
Samuelson's insight Yor formula, etc Applications

The calculus in a nutshell

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X[h]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) h\left(\Delta X_{t}\right)\right)
$$

- Add and subtract only small jumps indicated by $h$
- Émery formula represents a spectrum of equivalent expressions

- There is flexibility in the choice of $h$


## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Émery formula
Drift calculation
Samuelson's insight

Yor formula, etc
Applications
The calculus in a nutshell

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X[0]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot} \xi\left(\Delta X_{t}\right)
$$

- Add and subtract only small jumps indicated by $h$
- Émery formula represents a spectrum of equivalent expressions

- There is flexibility in the choice of $h$
- $h=0$ when $X$ has finite variation jumps; $X[0]=X^{c}$


## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Émery formula
Drift calculation
Samuelson's insight

Yor formula, etc
Applications
The calculus in a nutshell

Key properties
Better jump integral

Pedagogical opportunities

Final quotes References

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X \quad+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t}\right)
$$

- Add and subtract only small jumps indicated by $h$
- Émery formula represents a spectrum of equivalent expressions

- There is flexibility in the choice of $h$
- $h=0$ when $X$ has finite variation jumps; $X[0]=X^{c}$
- $h=$ id when $X$ has finite drift; $X[i d]=X$


## Drift calculation I

Simplified Stochastic Calculus
A. Černý

Bayes Business School

- Need an easy, clean way to compute the drift of $\xi \circ X$
- Émery formula already provides this!

$$
\xi \circ X=\xi^{\prime}(0) \cdot X[1]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) \Delta X_{t} \mathbf{1}_{\left|\Delta X_{t}\right| \leq 1}\right)
$$

- Add and subtract only small jumps indicated by $h$
- Émery formula represents a spectrum of equivalent expressions

- There is flexibility in the choice of $h$
- $h=0$ when $X$ has finite variation jumps; $X[0]=X^{c}$
- $h=$ id when $X$ has finite drift; $X[i d]=X$
- Otherwise $h=\operatorname{id} \mathbf{1}_{|\mathrm{id}| \leq 1}$ chops jumps at 1


## Drift calculation II

- Suppose $X$ is Lévy with Brownian vol $\sigma$ and Lévy measure $\Pi$
- Drift rate also given: either $b^{X[0]}, b^{X}$, or $b^{X[1]}$
- Select $h$ accordingly
- Assume $\xi \circ X$ has finite drift (is a special semimartigale). Then

$$
\begin{array}{ccc}
\xi \circ X & =\xi^{\prime}(0) \cdot X[h]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) h\left(\Delta X_{t}\right)\right) \\
\downarrow & \downarrow & \downarrow \\
b^{\xi \circ X}= & \xi^{\prime}(0) b^{X[h]}+\frac{1}{2} \xi^{\prime \prime}(0) \times \sigma^{2} & +\int_{\mathbb{R}}\left(\xi(x)-\xi^{\prime}(0) h(x)\right) \Pi(\mathrm{d} x)
\end{array}
$$

- EXAMPLE: $\xi=i d^{2}$, predictable quadratic variation rate
- EXAMPLE: $\xi=\mathrm{e}^{\text {id }}-1$, expected growth rate of stock price

$$
\begin{aligned}
b^{\mathrm{id} \mathrm{~d}^{2} \circ x} & =\sigma^{2}+\int_{\mathbb{R}} x^{2} \Pi(\mathrm{~d} x) \\
b^{\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ x} & =b^{X[h]}+\frac{1}{2} \sigma^{2}+\int_{\mathbb{R}}\left(\mathrm{e}^{x}-1-h(x)\right) \Pi(\mathrm{d} x)
\end{aligned}
$$

## Drift calculation II

- Suppose $X$ is Lévy with Brownian vol $\sigma$ and Lévy measure $\Pi$
- Drift rate also given: either $b^{X[0]}, b^{X}$, or $b^{X[1]}$
- Select $h$ accordingly
- Assume $\xi \circ X$ has finite drift (is a special semimartigale). Then

$$
\begin{array}{ccc}
\xi \circ X & =\xi^{\prime}(0) \cdot X[h]+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq \cdot}\left(\xi\left(\Delta X_{t}\right)-\xi^{\prime}(0) h\left(\Delta X_{t}\right)\right) \\
\downarrow & \downarrow & \downarrow \\
b^{\xi \circ X}= & \xi^{\prime}(0) b^{X[h]}+\frac{1}{2} \xi^{\prime \prime}(0) \times \sigma^{2} & +\int_{\mathbb{R}}\left(\xi(x)-\xi^{\prime}(0) h(x)\right) \Pi(\mathrm{d} x)
\end{array}
$$

- EXAMPLE: $\xi=\mathrm{id}^{2}$, predictable quadratic variation rate
- EXAMPLE: $\xi=\mathrm{e}^{\text {id }}-1$, expected growth rate of stock price

$$
\begin{aligned}
b^{\mathrm{id} \mathrm{~d}^{2} \circ X} & =\sigma^{2}+\int_{\mathbb{R}} x^{2} \Pi(\mathrm{~d} x) \\
b^{\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ X} & =b^{X[h]}+\frac{1}{2} \sigma^{2}+\int_{\mathbb{R}}\left(\mathrm{e}^{x}-1-h(x)\right) \Pi(\mathrm{d} x)
\end{aligned}
$$

## Lévy process: classical vs new approach

- Classical notation

$$
X_{t}=X_{0}+\int_{0}^{t} \alpha \mathrm{~d} s+\int_{0}^{t} \sigma \mathrm{~d} W_{s}+\int_{0}^{t} \int_{|x| \leq 1} \times \widehat{N}(\mathrm{~d} s, \mathrm{~d} x)+\int_{0}^{t} \int_{|x|>1} \times N(\mathrm{~d} s, \mathrm{~d} x)
$$

- $N$ is a Poisson jump measure
- $\Pi$ the corresponding Lévy measure
- $\widehat{N}(\mathrm{~d} t, \mathrm{~d} x)=N(\mathrm{~d} t, \mathrm{~d} x)-\Pi(\mathrm{d} x) \mathrm{d} t$
- $\alpha, \sigma \in \mathbb{R}$
- Simplified calculus: just record the triplet

$$
\left(b^{X[1]}=\alpha, c^{X}=\sigma^{2}, F^{X}=\Pi\right)
$$

- The top equation translates to the trivial statement

$$
X_{t}=X_{0}+\mathrm{id} \circ X_{t}
$$

- not specific to Lévy processes
- completely measure-invariant


## Lévy process: classical vs new approach

- Classical notation

$$
X_{t}=X_{0}+\int_{0}^{t} \alpha \mathrm{~d} s+\int_{0}^{t} \sigma \mathrm{~d} W_{s}+\int_{0}^{t} \int_{|x| \leq 1} \times \widehat{N}(\mathrm{~d} s, \mathrm{~d} x)+\int_{0}^{t} \int_{|x|>1} \times N(\mathrm{~d} s, \mathrm{~d} x)
$$

- $N$ is a Poisson jump measure
- $\Pi$ the corresponding Lévy measure
- $\widehat{N}(\mathrm{~d} t, \mathrm{~d} x)=N(\mathrm{~d} t, \mathrm{~d} x)-\Pi(\mathrm{d} x) \mathrm{d} t$
- $\alpha, \sigma \in \mathbb{R}$
- Simplified calculus: just record the triplet

$$
\left(b^{X[1]}=\alpha, c^{X}=\sigma^{2}, F^{X}=\Pi\right) .
$$

- The top equation translates to the trivial statement

$$
X_{t}=X_{0}+\mathrm{id} \circ X_{t}
$$

- not specific to Lévy processes
- completely measure-invariant


## Lévy process: classical vs new approach

- Classical notation

$$
X_{t}=X_{0}+\int_{0}^{t} \alpha \mathrm{~d} s+\int_{0}^{t} \sigma \mathrm{~d} W_{s}+\int_{0}^{t} \int_{|x| \leq 1} \times \widehat{N}(\mathrm{~d} s, \mathrm{~d} x)+\int_{0}^{t} \int_{|x|>1} \times N(\mathrm{~d} s, \mathrm{~d} x)
$$

- $N$ is a Poisson jump measure
- $\Pi$ the corresponding Lévy measure
- $\widehat{N}(\mathrm{~d} t, \mathrm{~d} x)=N(\mathrm{~d} t, \mathrm{~d} x)-\Pi(\mathrm{d} x) \mathrm{d} t$
- $\alpha, \sigma \in \mathbb{R}$
- Simplified calculus: just record the triplet

$$
\left(b^{X[1]}=\alpha, c^{X}=\sigma^{2}, F^{X}=\Pi\right)
$$

- The top equation translates to the trivial statement

$$
X_{t}=X_{0}+\mathrm{id} \circ X_{t}
$$

- not specific to Lévy processes
- completely measure-invariant


## Lévy process: classical vs new approach

- Classical notation

$$
X_{t}=X_{0}+\int_{0}^{t} \alpha \mathrm{~d} s+\int_{0}^{t} \sigma \mathrm{~d} W_{s}+\int_{0}^{t} \int_{|x| \leq 1} \times \widehat{N}(\mathrm{~d} s, \mathrm{~d} x)+\int_{0}^{t} \int_{|x|>1} \times N(\mathrm{~d} s, \mathrm{~d} x)
$$

- $N$ is a Poisson jump measure
- $\Pi$ the corresponding Lévy measure
- $\widehat{N}(\mathrm{~d} t, \mathrm{~d} x)=N(\mathrm{~d} t, \mathrm{~d} x)-\Pi(\mathrm{d} x) \mathrm{d} t$
- $\alpha, \sigma \in \mathbb{R}$
- Simplified calculus: just record the triplet

$$
\left(b^{X[1]}=\alpha, c^{X}=\sigma^{2}, F^{X}=\Pi\right)
$$

- The top equation translates to the trivial statement

$$
X_{t}=X_{0}+\mathrm{id} \circ X_{t}
$$

- not specific to Lévy processes
- completely measure-invariant


## Drift vs moments

- Cumulative drift (a.k.a. additive compensator)

$$
\xi \circ X-B^{\xi \circ X} \in \mathscr{M}_{\text {loc }}
$$

- For Lévy processes we have

$$
B_{t}^{\xi \circ X}=b^{\xi \circ X} t
$$

- More generally, if $\xi \circ X$ is PII, then for all $t \geq 0$

$$
\mathrm{E}\left[\xi \circ X_{t}\right]=B_{t}^{\xi \circ X}
$$

- Higher moments: if PII $X$ has zero drift, then

$$
\begin{aligned}
& \mathrm{E}\left[\left(X_{t}-X_{0}\right)^{2}\right]=B_{t}^{\mathrm{id}^{2} \circ \mathrm{O}} \\
& \mathrm{E}\left[\left(X_{t}-X_{0}\right)^{3}\right]=B_{t}^{\mathrm{id} \mathrm{~d}^{3} \circ X}
\end{aligned}
$$

## Summary of the key points so far

- The $\xi$-variation of $X$ is given by the Émery formula
- Easy to remember as 2 nd order Taylor + jumps $\xi(\Delta X)$
- Émery formula is measure-invariant - no need for predictable characteristics of $X$
- It is also universal - can be applied to any semimartingale $X$
- Cumulative drift $B^{\xi \circ X}$ is easily obtained from the Émery formula
- $\xi$ can take many forms: powers, exponentials, logarithms, etc.
- $B^{\xi \circ X}$ is immediately useful when computing moments of PII $X$


## NEXT STEPS

- We shall see how to redeploy the drift multiplicatively
- This leads to the main applications
- Also explains genesis of some useful $\xi$ functions


## Samuelson's insight into geometric BM - I

- Reading between the lines in Samuelson (1965),

$$
\frac{\mathrm{d} S_{t}}{S_{t}}=\underbrace{\mu \mathrm{d} t+\sigma \mathrm{d} W_{t}}_{\mathrm{d} X_{t}} \Rightarrow \mathrm{E}\left[S_{t}\right] \text { grows at rate } \mu \text { regardless of } \sigma \text { ! }
$$

- For a special semimartingale $X$, we have $\mathrm{d} X_{t}=\mathrm{d} B_{t}^{X}+\mathrm{d} M_{t}^{X}$


## Theorem (Č. \& Ruf, 2023)

Let $X$ be a special $\mathbb{C}$-valued semimartingale with independent increments. Then

$$
\mathrm{E}\left[\mathscr{E}(X)_{t}\right]=\mathscr{E}\left(B^{X}\right)_{t} \quad \text { regardless of } M^{X}!
$$

- $\mathscr{E}(X)$ is the value of an asset / fund
- $X$ is the arithmetic rate of return of this asset / fund
- Expected growth rate = growth rate of expected value


## Samuelson's insight into geometric BM - II

Corollary ("Samuelson + Émery")
Let $X$ be a $\mathbb{C}$-valued semimartingale with independent increments such that $\xi \circ X$ is special. Then

$$
\mathrm{E}\left[\mathscr{E}(\xi \circ X)_{t}\right]=\mathscr{E}\left(B^{\xi \circ X}\right)_{t}
$$

## Yor formula and its generalizations

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Emery formula
Drift calculation
Samuelson's
insight
Yor formula, etc.
Applications
The calculus in a nutshell

Key properties
Better jump
integral
Pedagogical
opportunities
Final quotes
References

- In a one-period model, if $S$ increases by $10 \%$, how much will $S^{2}$ increase by relative to its original value?


## Yor formula and its generalizations

Simplified Stochastic Calculus
A. Černý

Bayes Business School

- In a one-period model, if $S$ increases by $10 \%$, how much will $S^{2}$ increase by relative to its original value?
- $S^{2}$ increases by $21 \%=1.1^{2}-1=2 \times 0.1+0.1^{2}$


## Yor formula and its generalizations

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline

- In a one-period model, if $S$ increases by $10 \%$, how much will $S^{2}$ increase by relative to its original value?
- $S^{2}$ increases by $21 \%=1.1^{2}-1=2 \times 0.1+0.1^{2}$
- This is known as the Yor formula:

$$
\mathscr{E}(X)^{2}=\mathscr{E}(2 X+[X, X])
$$

## Yor formula and its generalizations

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Émery formula
Drift calculation

- In a one-period model, if $S$ increases by $10 \%$, how much will $S^{2}$ increase by relative to its original value?
- $S^{2}$ increases by $21 \%=1.1^{2}-1=2 \times 0.1+0.1^{2}$
- This is known as the Yor formula:

$$
\mathscr{E}(X)^{2}=\mathscr{E}(2 X+[X, X])
$$

- We have learned much more in fact:

$$
\mathscr{E}(X)^{\eta}=\mathscr{E}\left(\left((1+\mathrm{id})^{\eta}-1\right) \circ X\right)
$$

## Yor formula and its generalizations

- In a one-period model, if $S$ increases by $10 \%$, how much will $S^{2}$ increase by relative to its original value?
- $S^{2}$ increases by $21 \%=1.1^{2}-1=2 \times 0.1+0.1^{2}$
- This is known as the Yor formula:

$$
\mathscr{E}(X)^{2}=\mathscr{E}(2 X+[X, X])
$$

- We have learned much more in fact:

$$
\mathscr{E}(X)^{\eta}=\mathscr{E}\left(\left((1+\mathrm{id})^{\eta}-1\right) \circ X\right)
$$

- Similarly: if $X$ increases by 0.1 , then the percentage increase in $\mathrm{e}^{X}$ reads $\mathrm{e}^{0.1}-1 \approx 10.5 \%$, hence

$$
\mathrm{e}^{\eta\left(X-X_{0}\right)}=\mathscr{E}\left(\left(\mathrm{e}^{\eta \text { id }}-1\right) \circ X\right)
$$

## Yor formula and its generalizations

- In a one-period model, if $S$ increases by $10 \%$, how much will $S^{2}$ increase by relative to its original value?
- $S^{2}$ increases by $21 \%=1.1^{2}-1=2 \times 0.1+0.1^{2}$
- This is known as the Yor formula:

$$
\mathscr{E}(X)^{2}=\mathscr{E}(2 X+[X, X])
$$

- We have learned much more in fact:

$$
\mathscr{E}(X)^{\eta}=\mathscr{E}\left(\left((1+\mathrm{id})^{\eta}-1\right) \circ X\right)
$$

- Similarly: if $X$ increases by 0.1 , then the percentage increase in $e^{X}$ reads $e^{0.1}-1 \approx 10.5 \%$, hence

$$
\mathrm{e}^{\eta\left(X-X_{0}\right)}=\mathscr{E}\left(\left(\mathrm{e}^{\eta \text { id }}-1\right) \circ X\right)
$$

- $\mathrm{E}\left[\mathscr{E}\left(\left(\mathrm{e}^{i u \text { id }}-1\right) \circ X\right)_{t}\right]$ for $u \in \mathbb{R}$ yields Lévy-Khintchin!


## Samuelson + Émery + Yor $=$ lots of applications

- Classical financial setting
- $S>0$ is the stock price
- Assume $\ln S=: X$ is a given Lévy process (but could be any PII)
- Characteristic triplet

$$
\left(b^{x}[1]=\alpha, c^{x}=\sigma^{2}, F^{x}=\Pi\right)
$$

- Specific values

$$
\alpha=0.1 ; \quad \sigma=0.15 ; \quad \Pi=150 N\left(0, \frac{0.2^{2}}{150}\right)
$$

- Moments

$$
b^{\mathrm{id} \circ X} \approx 0.1 ; \quad b^{\mathrm{id} \mathrm{~d}^{\circ} \circ x}=0.25^{2} ; \quad \frac{b^{\mathrm{id} 4^{4} \circ x}}{0.25^{4}} \approx 0.008
$$

- Excess kurtosis is 0.008 years expressed in appropriate units

$$
0.008 \text { years }=2 \text { days }=16 \text { hours }=960 \text { minutes }
$$

## Characteristic function

- Take $v \in \mathbb{C}$
- We want to evaluate $\mathrm{E}\left[\mathrm{e}^{\nu X_{t}}\right]$
- Easily obtain the universal representation

$$
\mathcal{L}\left(\mathrm{e}^{v X}\right)=\left(\mathrm{e}^{v i d}-1\right) \circ X
$$

- This yields

$$
b^{\mathcal{L}\left(\mathrm{e}^{v x}\right)}=\alpha v+\frac{1}{2} \sigma^{2} v^{2}+\int_{\mathbb{R}}\left(\mathrm{e}^{v x}-1-v x \mathbf{1}_{|x| \leq 1}\right) \Pi(\mathrm{d} x)
$$

- Exponential compensator (Lévy-Khintchin)

$$
\mathrm{E}\left[\mathrm{e}^{v\left(X_{t}-X_{0}\right)}\right]=\mathrm{E}\left[\mathscr{E}\left(\left(\mathrm{e}^{v x}-1\right) \circ X\right)_{t}\right]=\exp \left(b^{\mathcal{L}\left(\mathrm{e}^{v x}\right)} t\right)
$$

- $b^{\mathcal{L}\left(\mathrm{e}^{v x}\right)} t$ is the cumulant generating function of $X_{t}-X_{0}$


## Maximization of exponential utility

- $X=\ln S$
- Cumulative yield on $\$ 1$ investment $R=\mathcal{L}\left(e^{X}\right)=\left(e^{\text {id }}-1\right) \circ X$
- Fixed dollar investment $\lambda$
- Utility of terminal wealth $-\mathrm{E}\left[\mathrm{e}^{-\lambda R_{t}}\right]$
- Need to find the drift of $\mathcal{L}\left(\mathrm{e}^{-\lambda R}\right)$
- Use the composition rule to find

$$
\mathcal{L}\left(\mathrm{e}^{-\lambda R}\right)=\left(\mathrm{e}^{-\lambda \mathrm{id}}-1\right) \circ R=\left(\mathrm{e}^{-\lambda\left(\mathrm{e}^{\mathrm{id}}-1\right)}-1\right) \circ X
$$

- Evaluate the drift rate

$$
b^{\mathcal{L}\left(\mathrm{e}^{-\lambda R}\right)}=-\alpha \lambda+\frac{\sigma^{2}}{2}\left(\lambda^{2}-\lambda\right)+\int_{\mathbb{R}}\left(\mathrm{e}^{-\lambda\left(\mathrm{e}^{\mathrm{x}}-1\right)}-1+\lambda x \mathbf{1}_{|x| \leq 1}\right) \Pi(\mathrm{d} x) .
$$

- Expected utility is $-\exp \left(b^{\mathcal{L}\left(\mathrm{e}^{-\lambda R}\right)} t\right)$


## Minimal entropy martingale measure

- Denote optimal investment by $\lambda_{*}$
- Density of MEMM dQ/dP is proportional to marginal utility $\mathrm{e}^{-\lambda_{*} R}$
- We want Q -drift of $\mathcal{L}\left(\mathrm{e}^{v X}\right)$ to get the c.f. of $X_{t}$ under Q
- By Girsanov the same as P-drift of

$$
\begin{aligned}
\mathcal{L}\left(\mathrm{e}^{v X}\right) & +\left[\mathcal{L}\left(\mathrm{e}^{v X}\right), \mathcal{L}\left(\mathrm{e}^{-\lambda_{*} R}\right)\right] \\
& =\left(\mathrm{e}^{v \text { id }}-1\right) \circ X+\left(\mathrm{e}^{v \text { id }}-1\right)\left(\mathrm{e}^{-\lambda_{*}\left(\mathrm{e}^{x}-1\right)}-1\right) \circ X
\end{aligned}
$$

- Evaluate the P -drift rate of $\xi \circ X$ with $\xi=\left(\mathrm{e}^{v x}-1\right) \mathrm{e}^{-\lambda_{*}\left(\mathrm{e}^{x}-1\right)}$

$$
\begin{aligned}
b_{\mathrm{Q}}^{\mathcal{L}\left(\mathrm{e}^{v x}\right)}=b^{\xi \circ X} & =\alpha v+\frac{\sigma^{2}}{2}\left(v^{2}-2 \lambda_{*} v\right) \\
& +\int_{\mathbb{R}}\left(\left(\mathrm{e}^{v x}-1\right) \mathrm{e}^{-\lambda_{*}\left(\mathrm{e}^{x}-1\right)}-v x \mathbf{1}_{|x| \leq 1}\right) \Pi(\mathrm{d} x)
\end{aligned}
$$

## Change of measure in classical notation

- Lengthy and difficult
- Find an explicit expression for $\log Z$

$$
\begin{aligned}
\log Z= & -\int_{0}^{\cdot} \lambda_{*} \sigma \mathrm{~d} W_{s}-\frac{1}{2} \int_{0}^{\cdot} \lambda_{*}^{2} \sigma^{2} \mathrm{~d} s+\int_{0}^{\cdot} \int_{\mathbb{R}}-\lambda_{*}\left(\mathrm{e}^{x}-1\right) \widehat{N}(\mathrm{~d} s, \mathrm{~d} x) \\
& +\int_{0}^{\cdot} \int_{\mathbb{R}}\left(-\lambda_{*}\left(\mathrm{e}^{x}-1\right)-\left(\mathrm{e}^{-\lambda_{*}\left(\mathrm{e}^{x}-1\right)}-1\right)\right) \Pi(\mathrm{d} x) \mathrm{d} s
\end{aligned}
$$

- Construct a new Brownian motion for the measure Q,

$$
\mathrm{d} W_{t}^{\mathrm{Q}}=\mathrm{d} W_{t}+\lambda_{*} \sigma \mathrm{~d} t
$$

- New compensated Poisson jump measure

$$
\widehat{N}^{\mathrm{Q}}(\mathrm{~d} t, \mathrm{~d} x)=\widehat{N}(\mathrm{~d} t, \mathrm{~d} x)+\left(1-\mathrm{e}^{-\lambda_{*}\left(\mathrm{e}^{x}-1\right)}\right) \Pi(\mathrm{d} x) \mathrm{d} t
$$

- Applebaum (2009), Theorem 5.2.12, Exercise 5.2.14
- Øksendal \& Sulem (2007), Theorem 1.32 and Lemma 1.33
- Substitute for $W, N$, and $\hat{N}$ in the original expression for $X$
- More examples in this vein Č. \& Ruf (2021c)


## Further applications (briefly)

- Knowledge of drift has many applications outside PII setting: PIDEs; HJB equations; Feynman-Kac; affine Riccati equations
- In PII setting
- Make up your own Lévy measure
- Pricing of simple contracts $\log S$ or $[\mathcal{L}(S), \mathcal{L}(S)]$
- But even plain vanilla options via Fourier transform
- A variety of risk-neutral measures Esscher, MEMM, VOMM (MMM), q-optimal, e.g.,

$$
\frac{\mathrm{d} Q}{\mathrm{~d} P}=\frac{\mathscr{E}\left(-a\left(\mathrm{e}^{\text {id }}-1\right) \circ X\right)_{T}}{\mathscr{E}\left(B^{-a\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ X}\right)_{T}}, \quad \text { with } a=\frac{b^{\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ X}}{b^{\left(\mathrm{e}^{\mathrm{id}}-1\right)^{2} \circ X}}
$$

- Correlation between $\mathscr{E}(\eta \mathcal{L}(S))$ and $S^{\eta}$ (equals 1 in B-S model)

$$
\frac{\exp \left(b^{\eta\left(\mathrm{e}^{\text {id }}-1\right)\left(\mathrm{e}^{\eta \text { id }}-1\right) \circ x}\right)-1}{\sqrt{\exp \left(b^{\eta^{2}\left(\mathrm{e}^{\text {id }}-1\right)^{2} \circ x}\right)-1} \sqrt{\exp \left(b^{\left(\mathrm{e}^{\eta \text { id }}-1\right)^{2} \circ x}\right)-1}}
$$

## Applications of multiplicative compensators

- Proofs of moment bounds
- to show existence and uniqueness of BSDE solutions, e.g., Kazi-Tani et al. (2015), Lemma A. 5
- to estimate variation distance of probability measures Kabanov et al. (1986), Theorem 2.1
- to prove uniform integrability of local martingales, e.g., Lépingle \& Mémin (1978), Lemma I.4; Ruf (2013), Corollary 5
- Filtration extension / shrinkage
- e.g., Nikeghbali \& Yor (2006), Section 4; Kardaras (2015); Aksamit \& Jeanblanc (2017), Chapter 5; Kardaras \& Ruf (2020), Section 5
- Theory of Markov processes
- e.g., Itô \& Watanabe (1965) Chapter 2; Chen et al. (2004), Theorem 3.1


## Why are variations a relatively unused concept?

- For continuous $X$, all variations are linear-quadratic, e.g.,

$$
\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ X=\left(\mathrm{id}+\frac{1}{2} \mathrm{id}^{2}\right) \circ X
$$

- Expression $\xi \circ X$ arises often but in contexts that have nothing to do with variations, e.g.,
- Goll \& Kallsen (2000, Lemma A.8); S, S->0

$$
\mathcal{L}(S):=\int_{0}^{\cdot} \frac{\mathrm{d} S_{u}}{S_{u-}}=\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ \ln S
$$

- Mémin (1978, Proposition I-1); $\Delta Y \neq-1$

$$
\frac{\mathscr{E}(X)}{\mathscr{E}(Y)}=\mathscr{E}\left(\left(\frac{1+\mathrm{id}_{1}}{1+\mathrm{id}_{2}}-1\right) \circ(X, Y)\right)
$$

- Doléans-Dade (1970, Théorème 1) $\mathscr{E}(X)=\mathrm{e}^{\ln (1+i d) \circ X}$


## Émery formula for complex functions

- Want $\mathbb{C}^{n}$-valued $\xi$ applied to $\mathbb{C}^{d}$-valued $X$
- Define lifts id : $\mathbb{C}^{m} \rightarrow \mathbb{R}^{2 m}$ and ǐd : $\mathbb{C}^{m} \rightarrow \mathbb{C}^{2 m}$

$$
\begin{aligned}
& \hat{\mathrm{id}}=\left(\operatorname{Re~id}_{1}, \operatorname{Im~id}_{1}, \ldots, \operatorname{Re~id}_{m}, \operatorname{Im~id}_{m}\right) \\
& \text { id }=\left(\mathrm{id}_{1}, \mathrm{id}_{1}^{*}, \ldots, \mathrm{id}_{m}, \mathrm{id}_{m}^{*}\right)
\end{aligned}
$$

- Real derivatives $\hat{D}$; Wirtinger derivatives $\check{D}$

$$
\begin{aligned}
\xi \circ X & =\hat{D} \xi(0) \cdot \hat{X}+\frac{1}{2} \hat{D}^{2} \xi(0) \cdot[\hat{X}, \hat{X}]^{c}+(\xi-\hat{D} \xi(0) \text { id }) * \mu^{X} \\
& =\check{D} \xi(0) \cdot \check{X}+\frac{1}{2} \check{D}^{2} \xi(0) \cdot[\check{X}, \check{X}]^{c}+\left(\xi-\check{D} \xi(0) \text { ǐd }^{c}\right) * \mu^{x}
\end{aligned}
$$

- If $\xi$ is analytic or $\xi, X$ real-valued, we can drop ^ and ${ }^{\wedge}$
- Definition of "○" handles restricted domains, e.g., $\log (1+\mathrm{id}) \circ X$ makes sense if $\Delta X>-1$


## Example of a useful non-analytic representation

- Consider $\xi=|1+\mathrm{id}|^{\alpha}-1$ for $\alpha \in \mathbb{C}$
- On a sufficiently small neighbourhood of zero

$$
|1+\mathrm{id}|^{\alpha}-1=(1+\mathrm{id})^{\frac{\alpha}{2}}\left(1+\mathrm{id}^{*}\right)^{\frac{\alpha}{2}}-1 .
$$

- Apply formal Wirtinger calculus to obtain, e.g.,

$$
\partial_{x} \xi=\frac{\alpha}{2}(1+\mathrm{id})^{\frac{\alpha}{2}-1}\left(1+\mathrm{id}^{*}\right)^{\frac{\alpha}{2}} ; \quad \partial_{x^{*}} \xi=\frac{\alpha}{2}(1+\mathrm{id})^{\frac{\alpha}{2}}\left(1+\mathrm{id}^{*}\right)^{\frac{\alpha}{2}-1}
$$

- Émery formula $(\Delta X \neq-1)$

$$
\begin{aligned}
\left(|1+\mathrm{id}|^{\alpha}-1\right) \circ X=\alpha & \cdot \operatorname{Re} X+\frac{\alpha}{2}(\alpha-1)[\operatorname{Re} X, \operatorname{Re} X]^{c}+\frac{\alpha}{2}[\operatorname{Im} X, \operatorname{Im} X]^{c} \\
& +\sum_{t \leq \cdot}\left(\left|1+\Delta X_{t}\right|^{\alpha}-1-\alpha \operatorname{Re} \Delta X_{t}\right)
\end{aligned}
$$

## Mellin transform of signed stochastic exponential

- Cannot be tackled by existing tools
- For fixed $\alpha \in \mathbb{C}$ define

$$
f_{1}=|\mathrm{id}|^{\alpha} \mathbf{1}_{\mathrm{id} \neq 0} ; \quad f_{2}=|\mathrm{id}|^{\alpha}\left(\mathbf{1}_{\mathrm{id}>0}-\mathbf{1}_{\mathrm{id}<0}\right) ; \quad \xi_{1,2}=f_{1,2}(1+\mathrm{id})-1
$$

- For all $\mathbb{R}$-valued $Y$,

$$
f_{1,2}(\mathscr{E}(Y))=\mathscr{E}\left(\xi_{1,2} \circ Y\right)
$$

- Observe $f_{1}+f_{2}=\left(\mathrm{id}^{+}\right)^{\alpha}$ and $f_{1}-f_{2}=\left(\mathrm{id}^{-}\right)^{\alpha}$
- If Y is PII, we get Mellin transforms of $\mathscr{E}(Y)_{t}^{+}$and $\mathscr{E}(Y)_{t}^{-}$

$$
\mathrm{E}\left[f_{1,2}\left(\mathscr{E}(Y)_{t}\right)\right]=\mathscr{E}\left(B^{\xi_{1,2} \circ Y}\right)_{t}
$$

- Lévy-Khintchin is of no use here
- Apply this calculation to exponential Lévy MV portfolio


## MV wealth as a signed stochastic exponential I

- Merton model log return $X$ with triplet

$$
\left(b^{X[0]}=\mu, \sigma^{2}, \Pi=\lambda \Phi\left(0, \gamma^{2}\right)\right)
$$

- Parameter values $\mu=0.2, \sigma=0.2, \lambda=1, \gamma=0.1$, and zero interest rate
- Optimal wealth $1-\mathscr{E}(\underbrace{-a\left(\mathrm{e}^{\text {id }}-1\right) \circ X}_{Y})$, where

$$
a=\frac{b^{\left(\mathrm{e}^{\mathrm{id}}-1\right) \circ}}{b^{\left(\mathrm{e}^{\mathrm{id}}-1\right)^{2} \circ} \mathrm{o}}=\frac{\mu+\sigma^{2} / 2+\lambda\left(\mathrm{e}^{\gamma^{2} / 2}-1\right)}{\sigma^{2}+\lambda\left(\mathrm{e}^{2 \gamma^{2}}-2 \mathrm{e}^{\gamma^{2} / 2}+1\right)} \approx 4.48 ;
$$

- Evaluate the exponential compensators

$$
\begin{aligned}
& b^{\xi_{1}(\mathrm{id} ; \alpha) \circ Y}=b^{\xi_{1}\left(-a\left(\mathrm{e}^{\mathrm{id}}-1\right) ; \alpha\right) \circ X}=I_{1}(\alpha) \\
& b^{\xi_{2}(\mathrm{id} ; \alpha) \circ Y}=b^{\xi_{2}\left(-a\left(\mathrm{e}^{\mathrm{id}}-1\right) ; \alpha\right) \circ X}=I_{1}(\alpha)-2 I_{2}(\alpha)
\end{aligned}
$$

## MV wealth as a signed stochastic exponential II

- Auxiliary expressions

$$
\left.\left.\left.\begin{array}{rl}
I_{1}(\alpha)= & -\alpha a(\mu
\end{array}\right) \frac{1}{2}(1+a) \sigma^{2}\right)+\frac{1}{2} \alpha^{2}(a \sigma)^{2}\right)
$$

- Evaluate the Mellin transforms

$$
\begin{aligned}
& g_{+}(\alpha)=\mathrm{E}\left[\left|\mathscr{E}(Y)_{t}\right|^{\alpha} \mathbf{1}_{\left\{\mathscr{E}(Y)_{t}>0\right\}}\right]=\mathrm{e}^{I_{1}(\alpha) T} \frac{1+\mathrm{e}^{-2 l_{2}(\alpha) T}}{2} \\
& g_{-}(\alpha)=\mathrm{E}\left[\left|\mathscr{E}(Y)_{t}\right|^{\alpha} \mathbf{1}_{\left\{\mathscr{E}(Y)_{t}<0\right\}}\right]=\mathrm{e}^{{I_{1}(\alpha) T} \frac{1-\mathrm{e}^{-2 l_{2}(\alpha) T}}{2}}
\end{aligned}
$$

- Observe $g_{-}(0)=\mathrm{P}(\mathscr{E}(Y)<0) \approx 2.2 \%$


## MV wealth as a signed stochastic exponential III

- Compute subdensities of $\log |\mathscr{E}(Y)|$ conditional on $\mathscr{E}(Y) \gtrless 0$ by Fourier inversion of conditional c.f.-s

$$
\phi_{+}(u)=\frac{g_{+}(i u)}{g_{+}(0)} ; \quad \phi_{-}(u)=\frac{g_{-}(i u)}{g_{-}(0)}, \quad u \in \mathbb{R},
$$

- The whole computation is structured and algorithmic


## MV wealth as a signed stochastic exponential IV

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Emery formula
Drift calculation

## Samuelson's

 insight Yor formula, etcApplications
The calculus in a nutshell

Key properties
Better jump integral

Pedagogical opportunities

Final quotes

(a) Subdensity of $\log \mathscr{E}\left(-a\left(\mathrm{e}^{\text {id }}-1\right) \circ X\right)_{T}^{-}$.

(b) Subdensity of $\log \mathscr{E}\left(-a\left(\mathrm{e}^{\text {id }}-1\right) \circ X\right)_{T}^{+}$.

Figure: Distribution of a signed stochastic exponential

## MV wealth as a signed stochastic exponential V

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Emery formula
Drift calculation
Samuelson's
insight
Yor formula, etc.
Applications
The calculus

## in a nutshell

Key properties
Better jump integral

Pedagogical opportunities

Final quotes
References


Figure: Density of the terminal wealth distribution $1-\mathscr{E}\left(-a\left(\mathrm{e}^{\text {id }}-1\right) \circ X\right)_{T}$.

## Appeal

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Outline
Emery formula
Drift calculation
Samuelson's insight Yor formula, etc Applications

The calculus in a nutshell

- We are collecting examples to include in a book
- Let us know of other applications
- Could be the same maths in different context (e.g., Act. Sci.)
- New applications (e.g., recursive utility)


## The calculus in a nutshell

- Make $\xi$ predictable: calculus of "predictable variations"
- More accurately: semimartingale representations
- Integral is a "linear variation"

$$
\zeta \cdot X=(\zeta \mathrm{id}) \circ X
$$

- The same Émery formula applies

$$
\xi \circ X=\xi^{\prime}(0) \cdot X+\frac{1}{2} \xi^{\prime \prime}(0) \cdot[X, X]^{c}+\sum_{t \leq}\left(\xi_{t}\left(\Delta X_{t}\right)-\xi_{t}^{\prime}(0) \Delta X_{t}\right)
$$

- Each of the three integrals must exist separately
- $\xi^{\prime}(0) \in L(X)$
- $\xi^{\prime \prime}(0) \in L\left([X, X]^{c}\right)$
- $\xi(\Delta X)-\xi^{\prime}(0) \Delta X$ absolutely summable

饣ِ'Observe $\xi^{f}:=f\left(X_{-}+\mathrm{id}\right)-f\left(X_{-}\right)$yields the Itô-Meyer formula

$$
\xi^{f} \circ X=f^{\prime}\left(X_{-}\right) \cdot X+\frac{1}{2} f^{\prime \prime}\left(X_{-}\right) \cdot[X, X]^{c}+\sum_{t \leq}\left(f\left(X_{t}\right)-f\left(X_{t-}\right)-f^{\prime}\left(X_{t-}\right) \Delta X_{t}\right)
$$

## Universal representations

- Want the calculus to be rigorous, flexible, and easy to use
- Need a rich class of $\xi$, where nothing strange can happen


## Definition (Universal representing functions)

$\mathfrak{U}$ denotes the set of predictable functions $\xi$ such that, $\mathrm{P}-$ a.s.,
(i) $\xi_{t}(0)=0$, for all $t \geq 0$.
(ii) $x \mapsto \xi_{t}(x)$ is twice real-differentiable at zero, for all $t \geq 0$.
(iii) $D \xi(0)$ and $D^{2} \xi(0)$ are locally bounded.
(iv) There is a predictable locally bounded process $K>0$ such that

$$
\sup _{0<|x| \leq 1 / k} \frac{|\xi(x)-D \xi(0) x|}{|x|^{2}} \text { is locally bounded. }
$$

## Key properties

Simplified Stochastic
Calculus
A. Černý

Bayes Business
School

Outline
Émery formula
Drift calculation
Samuelson's insight

Yor formula, etc.
Applications
The calculus in a nutshell

Key properties

- $\mathfrak{U}$ is closed under common operations
- Starting from $X=X_{0}+$ id $\circ X$ and using only
- composition, i.e., the "o" operation with functions in $\mathfrak{U}$;

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

- change of variables by means of (deterministic) $\mathcal{C}^{2}$ functions

$$
f(X)=f\left(X_{0}\right)+\left(f\left(X_{-}+\text {id }\right)-f\left(X_{-}\right)\right) \circ X^{\prime}
$$

- locally bounded integration;

$$
\zeta \cdot(\xi \circ X)=\zeta \xi \circ X
$$

every result will be of the form $\eta \circ X$ for some $\eta \in \mathfrak{U}$

- In practice, we never leave $\mathfrak{U}$, so no checking necessary


## Example: how to derive a new representation

- Suppose $X$ is log return
- Cumulative rate of return is then $\mathcal{L}\left(\mathrm{e}^{X}\right):=\mathrm{e}^{-X} \cdot \cdot \mathrm{e}^{X}$
- Let us compute $\left[\mathcal{L}\left(\mathrm{e}^{X}\right), \mathcal{L}\left(\mathrm{e}^{X}\right)\right]$
- Proceed in steps
- Change of variables

$$
e^{x}=e^{x_{0}}+\left(e^{x_{-}+i d}-e^{x_{-}}\right) \circ X
$$

- Locally bounded integration

$$
\mathcal{L}\left(\mathrm{e}^{X}\right)=\mathrm{e}^{-X_{-}} \cdot \mathrm{e}^{X}=\mathrm{e}^{-X_{-}}\left(\mathrm{e}^{x_{-}+\mathrm{id}}-\mathrm{e}^{x_{-}}\right) \circ X=\left(\mathrm{e}^{\text {id }}-1\right) \circ X
$$

- Composition

$$
\left[\mathcal{L}\left(\mathrm{e}^{X}\right), \mathcal{L}\left(\mathrm{e}^{X}\right)\right]=\mathrm{id} \mathrm{~d}^{2} \circ \mathcal{L}\left(\mathrm{e}^{X}\right)=\left(\mathrm{e}^{\text {id }}-1\right)^{2} \circ X
$$

- Instead of manipulating complicated stochastic expressions one performs simple algebraic operations


## Beyond universal representations

- One can move beyond universal representations
- $\mathfrak{I}(X)$ are functions specific to $X$ such that $\xi \circ X$ makes sense
- E.g., integrand $\zeta$ unbounded: $\zeta$ id $\notin \mathfrak{U}$ but $\zeta$ id $\in \mathfrak{I}(X)$
- Improvements to the Émery formula: better jump integral $\star$, no differentiability at predictable jump times
- General composition theorem: Let $\xi \in \mathfrak{I}(X), \psi \in \mathfrak{I}(\xi \circ X)$, and

$$
\psi^{\prime}(0) \in L\left(\xi^{\prime \prime}(0) \cdot[X, X]^{c}\right) \cap L\left(\left(\xi-\xi^{\prime}(0) \mathrm{id}\right) \star \mu^{X}\right)
$$

Then $\psi(\xi) \in \mathfrak{I}(X)$ and we have

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

## Beyond universal representations

- One can move beyond universal representations
- $\mathfrak{I}(X)$ are functions specific to $X$ such that $\xi \circ X$ makes sense
- E.g., integrand $\zeta$ unbounded: $\zeta$ id $\notin \mathfrak{U}$ but $\zeta$ id $\in \mathfrak{I}(X)$
- Improvements to the Émery formula: better jump integral $\star$, no differentiability at predictable jump times
- General composition theorem: Let $\xi \in \Im(X), \psi \in \mathfrak{I}(\xi \circ X)$, and

$$
\psi^{\prime}(0) \in L\left(\xi^{\prime \prime}(0) \cdot[X, X]^{c}\right) \cap L\left(\left(\xi-\xi^{\prime}(0) \mathrm{id}\right) \star \mu^{X}\right)
$$

Then $\psi(\xi) \in \mathfrak{I}(X)$ and we have

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

## Beyond universal representations

- One can move beyond universal representations
- $\mathfrak{I}(X)$ are functions specific to $X$ such that $\xi \circ X$ makes sense
- E.g., integrand $\zeta$ unbounded: $\zeta$ id $\notin \mathfrak{U}$ but $\zeta$ id $\in \mathfrak{I}(X)$
- Improvements to the Émery formula: better jump integral $\star$, no differentiability at predictable jump times
- General composition theorem: Let $\xi \in \mathfrak{I}(X), \psi \in \mathfrak{I}(\xi \circ X)$, and

$$
\psi^{\prime}(0) \in L\left(\xi^{\prime \prime}(0) \cdot[X, X]^{c}\right) \cap L\left(\left(\xi-\xi^{\prime}(0) \mathrm{id}\right) \star \mu^{X}\right)
$$

Then $\psi(\xi) \in \mathfrak{I}(X)$ and we have

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

## Beyond universal representations

- One can move beyond universal representations
- $\mathfrak{I}(X)$ are functions specific to $X$ such that $\xi \circ X$ makes sense
- E.g., integrand $\zeta$ unbounded: $\zeta$ id $\notin \mathfrak{U}$ but $\zeta$ id $\in \mathfrak{I}(X)$
- Improvements to the Émery formula: better jump integral $\star$, no differentiability at predictable jump times
- General composition theorem: Let $\xi \in \mathfrak{I}(X), \psi \in \mathfrak{I}(\xi \circ X)$, and

$$
\psi^{\prime}(0) \in L\left(\xi^{\prime \prime}(0) \cdot[X, X]^{c}\right) \cap L\left(\left(\xi-\xi^{\prime}(0) \text { id }\right) \star \mu^{X}\right)
$$

Then $\psi(\xi) \in \mathfrak{I}(X)$ and we have

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

## Beyond universal representations

- One can move beyond universal representations
- $\mathfrak{I}(X)$ are functions specific to $X$ such that $\xi \circ X$ makes sense
- E.g., integrand $\zeta$ unbounded: $\zeta$ id $\notin \mathfrak{U}$ but $\zeta$ id $\in \mathfrak{I}(X)$
- Improvements to the Émery formula: better jump integral $\star$, no differentiability at predictable jump times
- General composition theorem: Let $\xi \in \mathfrak{I}(X), \psi \in \mathfrak{I}(\xi \circ X)$, and

$$
\psi^{\prime}(0) \in L\left(\xi^{\prime \prime}(0) \cdot[X, X]^{c}\right) \cap L\left(\left(\xi-\xi^{\prime}(0) \mathrm{id}\right) \star \mu^{X}\right)
$$

Then $\psi(\xi) \in \mathfrak{I}(X)$ and we have

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

## Beyond universal representations

- One can move beyond universal representations
- $\mathfrak{I}(X)$ are functions specific to $X$ such that $\xi \circ X$ makes sense
- E.g., integrand $\zeta$ unbounded: $\zeta$ id $\notin \mathfrak{U}$ but $\zeta$ id $\in \mathfrak{I}(X)$
- Improvements to the Émery formula: better jump integral $\star$, no differentiability at predictable jump times
- General composition theorem: Let $\xi \in \mathfrak{I}(X), \psi \in \mathfrak{I}(\xi \circ X)$, and

$$
\psi^{\prime}(0) \in L\left(\xi^{\prime \prime}(0) \cdot[X, X]^{c}\right) \cap L\left(\left(\xi-\xi^{\prime}(0) \text { id }\right) \star \mu^{X}\right)
$$

Then $\psi(\xi) \in \mathfrak{I}(X)$ and we have

$$
\psi \circ(\xi \circ X)=\psi(\xi) \circ X
$$

- $\xi=\zeta$ id $\checkmark$ generalizes associative property of SI


## Better jump integral

Simplified Stochastic Calculus
A. Černý

Bayes Business School

Bure-jump semimartingales. Bernoulli 27(4), 2021, 2624-2648, arXiv:1909.03020.

- The Émery formula features one absolutely convergent sum in contrast to one non-absolutely convergent integral
'ٌِ-There is a way to sum jumps at predictable times non-absolutely
- This corresponds to $\sigma$-localizing the absolutely convergent sum
- The new summation can sometimes be done at inaccessible times but it always works at predictable times
- The calculus at predictable times is super well-behaved
- New semimartingale decomposition

$$
X=X_{0}+X^{\mathrm{qc}}+X^{\mathrm{dp}}
$$

- $X^{\text {qc }}$ is a quasi-left-continuous semimartingale
- $X^{\mathrm{dp}}$ equals the sum of its jumps at predictable times Furthermore, $\left[X^{\mathrm{qc}}, X^{\mathrm{dp}}\right]=0$.


## Consequences for representations

Simplified Stochastic

- Suppose $\mathcal{T}_{X}$ exhausts jumps of $X^{\mathrm{dp}}$ and let

$$
\xi \circ X^{\mathrm{dp}}:=\sum_{\tau \in \mathcal{T}_{X}} \xi_{\tau}\left(\Delta X_{\tau}\right)
$$

- Define $\xi \circ X^{\text {qc }}$ by the Émery formula (with $\star$ instead of $*$ )
- Let $\xi \circ X=\xi \circ X^{\text {qc }}+\xi \circ X^{\mathrm{dp}}$
- $\xi \circ X$ is special iff both $\xi \circ X^{\text {qc }}$ and $\xi \circ X^{\text {dp }}$ special
- Simplifies drift calculations

$$
B^{\xi 0 X^{\mathrm{dp}}}=\sum_{\tau \in \mathcal{T}_{X}} \mathrm{E}_{\tau-}\left[\xi_{\tau}\left(\Delta X_{\tau}\right)\right]
$$

## Pedagogical opportunities, continuous $X$

- For continuous $X$ it is common to write

$$
\mathrm{d} f\left(X_{t}\right)=f^{\prime}\left(X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right)\left(\mathrm{d} X_{t}\right)^{2}
$$

- In Émery's notation literally $\left(\mathrm{d} X_{t}\right)^{2}=\mathrm{d}[X, X]_{t}$
- McKean (1969) suggested the heuristics $\mathrm{d} W_{t} \mathrm{~d} t=0,(\mathrm{~d} t)^{2}=0$
- Better rule: $\left(\mathrm{d} X_{t}\right)^{3}=0,\left(\mathrm{~d} X_{t}\right)^{4}=0$ for any continuous $X$
- Why useful: for continuous $X$

$$
\xi \circ X=\left(\xi^{\prime}(0) \mathrm{id}+\frac{1}{2} \xi^{\prime \prime}(0) \mathrm{id}^{2}\right) \circ X
$$

- When composing linear-quadratic functions, max order is 4
- To get again linear-quadratic, ignore orders 3 and 4
- Also useful for small jumps asymptotics


## Final quotes

"Thus the parts of probability theory most relevant to [the question addressed here] are those results, usually abstract in appearance and French in origin, which are invariant under substitution of an equivalent measure."
— Harrison \& Pliska (1981)
"Because in mathematics we pile inferences upon inferences, it is a good thing whenever we can subsume as many of them as possible under one symbol."

- Carl Jacobi (1804-1851)
source Kneser (1907) transl. Remmert (1991)
"As often happens in the history of science, the simple ideas are the hardest to achieve; simplicity does not come of itself but must be created."
- Truesdell (1960)
comment on the work of Leonhard Euler


## Literature I

Aksamit, A. \& M. Jeanblanc (2017). Enlargement of Filtration with Finance in View. SpringerBriefs in Quantitative Finance. Springer, Cham.

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus (2nd ed.), Volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
Carr, P. \& R. Lee (2013). Variation and share-weighted variation swaps on time-changed Lévy processes. Finance Stoch. 17(4), 685-716.
Černý, A. \& J. Ruf (2021a). Pure-jump semimartingales. Bernoulli 27(4), 2624-2648.
Černý, A. \& J. Ruf (2021b). Simplified stochastic calculus with applications in Economics and Finance. European J. Oper. Res. 293(2), 547-560.

## Literature II

Simplified
Stochastic
Calculus
A. Černý

Bayes Business School

Černý, A. \& J. Ruf (2022). Simplified stochastic calculus via semimartingale representations. Electron. J. Probab. 27, 1-32. Paper No. 3.
Černý, A. \& J. Ruf (2023). Simplified calculus for semimartingales: Multiplicative compensators and changes of measure. Stochastic Process. Appl. 161.
Chen, Z.-Q., P. J. Fitzsimmons, M. Takeda, J. Ying, \& T.-S. Zhang (2004, July). Absolute continuity of symmetric Markov processes. Ann. Probab. 32(3), 2067-2098.
Cont, R. \& P. Tankov (2004). Financial Modelling with Jump Processes. Chapman \& Hall/CRC Financial Mathematics Series. Chapman \& Hall/CRC, Boca Raton, FL.
Doléans-Dade, C. (1970). Quelques applications de la formule de changement de variables pour les semimartingales. $Z$. Wahrscheinlichkeitstheorie verw. Gebiete 16, 181-194.

## Literature III

Duffie, D., J. Pan, \& K. Singleton (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343-1376.
Émery, M. (1978). Stabilité des solutions des équations différentielles stochastiques application aux intégrales multiplicatives stochastiques. Z. Wahrscheinlichkeitstheorie verw. Gebiete 41(3), 241-262.
Goll, T. \& J. Kallsen (2000). Optimal portfolios for logarithmic utility. Stochastic Process. Appl. 89, 31-48.
Harrison, J. M. \& S. R. Pliska (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Process. Appl. 11(3), 215-260.
Itô, K. \& S. Watanabe (1965). Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier (Grenoble) 15(1), 13-30.

## Literature IV

Jacod, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl. 118(4), 517-559.
Kabanov, Y. M., R. S. Liptser, \& A. N. Shiryaev (1986). On the variation distance for probability measures defined on a filtered space. Probab. Theory Related Fields 71(1), 19-35.
Kallsen, J. \& J. Muhle-Karbe (2010). Exponentially affine martingales, affine measure changes and exponential moments of affine processes. Stochastic Process. Appl. 120(2), 163-181.
Kardaras, C. (2015). On the stochastic behaviour of optional processes up to random times. Ann. Appl. Probab. 25(2), 429-464.
Kardaras, C. \& J. Ruf (2020). Filtration shrinkage, the structure of deflators, and failure of market completeness. Finance Stoch. 24(4), 871-901.

## Literature V

Kazi-Tani, N., D. Possamaï, \& C. Zhou (2015, July). Second-order BSDEs with jumps: Formulation and uniqueness. Ann. Appl. Probab. 25(5), 2867-2908.
Kneser, A. (1907). Euler und die Variationsrechnung. In Festschrift zur Feier des 200. Geburtstages Leonhard Eulers, Volume 25 of Abhandlung zur Geschichte der mathematischen Wissenschaften, pp. 21-60. Teubner, Leipzig.
Lépingle, D. \& J. Mémin (1978). Sur l'intégrabilité uniforme des martingales exponentielles. Z. Wahrscheinlichkeitstheorie verw. Gebiete 42(3), 175-203.
McKean, Jr., H. P. (1969). Stochastic Integrals. Probability and Mathematical Statistics, No. 5. Academic Press, New York.
Mémin, J. (1978). Décompositions multiplicatives de semimartingales exponentielles et applications. In Séminaire de Probabilités, XII, Volume 649 of Lecture Notes in Math., pp. 35-46. Springer, Berlin.

## Literature VI

Nikeghbali, A. \& M. Yor (2006). Doob's maximal identity, multiplicative decompositions and enlargements of filtrations. Illinois J. Math. 50(1-4), 791-814.
Øksendal, B. \& A. Sulem (2007). Applied Stochastic Control of Jump Diffusions (2nd ed.). Universitext. Springer, Berlin.
Remmert, R. (1991). Theory of Complex Functions, Volume 122 of Graduate Texts in Mathematics. Springer, New York. Translated from the second German edition by Robert B. Burckel, Readings in Mathematics.
Ruf, J. (2013). A new proof for the conditions of Novikov and Kazamaki. Stochastic Process. Appl. 123(2), 404-421.
Samuelson, P. (1965). Rational theory of warrant pricing. Industrial Management Review 6, 13-32.
Truesdell, C. (1960). The Rational Mechanics of Flexible or Elastic Bodies, 1638-1788. Orell Füssli, Zürich.

