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Simplified
Stochastic

S o Simplified calculus from several perspectives
As a recipe for obtaining new formulae

As a useful shorthand

As a tool for practical calculations

As an algorithmic device

As a pedagogical tool

Outline

@ Will touch upon

E Emery, M. (1978). Stabilité des solutions des équations différentielles
stochastiques application aux intégrales multiplicatives stochastiques.
Probab. Theory Related Fields 41(3), 241-262.

[\ Carr, P. and R. Lee (2013). Variation and share-weighted variation swaps on
time-changed Lévy processes. Finance Stoch. 17(4), 685-716.
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Simplified
Sidiae Based on a series of joint works with Johannes Ruf (LSE Math.)

Calculus

@ Intro for readers familiar with dt,dW,dN calculus

[§ Simplified stochastic calculus with applications in Economics and
Outline Finance, European J. Oper. Res. 293(2), 2021, 547-560,
ssrn:3500384.

@ Appendix on affine Riccati equations a la Duffie, Pan, and Singleton,
ssrn:3752072.

@ Theory at the level of Jacod and Shiryaev

[J Pure-jump semimartingales. Bernoulli 27(4), 2021, 2624—2648,
arXiv:1909.03020.

[3 Simplified stochastic calculus via semimartingale representations.
Electron. J. Probab. 27, 2022, paper no. 3, ssrn:3633638.

[§ Simplified calculus for semimartingales: Multiplicative compensators
and changes of measure. To appear in Stochastic Process. Appl.,
ssrn:3633622.

@ Slides available from www.martingales.sk


https://ssrn.com/abstract=3500384
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https://arxiv.org/abs/1909.03020
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Plan of the talk

Simplified
Stochastic
Calculus

The Emery formula and drift calculation
Samuelson's insight into geometric Brownian motion
Generalized Yor formula (aka returns on NASDAQ")
A plethora of applications

Outline

The calculus in a nutshell

NOTATION REMARK:
We will encounter specific functions, such as

o X x?
e x—e -1
o x — log(1 + x), etc.
@ The corresponding “function handles” will read
o id®
0 ed—1
o log(1+id), etc.



Emery formula
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Caleulus @ Semimartingale X (R-valued for now)
@ Function £ : R — R in C? with £(0) =0

o Want to formalize a process with increment £(d.X;)

@ Suppose X has jumps of finite variation
o Continuous part dX€ :=dX — AX

§(dX;) = £(0)dXy + 5"(0)d[XC XTe +&6(AX,)

Emery formula
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Caleulus @ Semimartingale X (R-valued for now)
Function £ : IR — R in C? with £(0) =0

Want to formalize a process with increment £(d.X;)
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°
°
@ Suppose X has jumps of finite variation
o Continuous part dX€ :=dX — AX
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Now make the formula universal

e reinterpret continuous quadratic covariation
e add jumps to the first term and subtract them in the last term

Denote the resulting process started at 0 by £ o X = [ £(dX;)

£ X =€/(0) X+ 56/(0)- X, XI° + Y_(E(AX,) - €(0)AX)

t<-

'V Examples coming soon (in three slides)



Emery formula Il

Simplified

ot Emery (1978) showed

D (Xt = Xty 252 o X
neN
. as the time partition (t,)nen becomes finer

@ Hence {0 X = fo £(dX;) is a &~variation of X!

o This result and Emery’s £(dX;) notation got lost somehow

@ "“G-variation” in Carr & Lee (2013) is the same concept but it
cites Jacod (2008), who only proves convergence in Skorokhod
topology

Definition 2.2 (G-variation) For G € V(Y). define the G-variation of Y to be
GoY G'(0) 12G''(0) G'(0)

V' = e ¥+ o (1 = Yo + volY L+ 3 (G(AY) = oals). 28)

— O<s<t
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Simplified
Stochastic Need an easy, clean way to compute the drift of £ o X

Calculus

Emery formula already provides this!
1
EoX =¢€'(0)- X[1]+§§”(0) X X190 <. (E(AX:) — €(0)AXe L ax, | <1)

Add and subtract only small jumps indicated by h
Emery formula represents a spectrum of equivalent expressions

Drift calculation

id 1\id|§1
Wby,

There is flexibility in the choice of h
e h =0 when X has finite variation jumps; X[0] = X¢
e h=id when X has finite drift; X[id] = X
o Otherwise h = id 1}jqj<1 chops jumps at 1
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Simplified
Stochastic

Caleulus @ Suppose X is Lévy with Brownian vol ¢ and Lévy measure I
o Drift rate also given: either pX01 pX o pXI

@ Select h accordingly

@ Assume & o X has finite drift (is a special semimartigale). Then
s el EoX =¢'(0)- X[h] + %5"(0) XX+ 2 (E(AX:) — €(0)h(AX:))
1 { { 1

BN = €(0) X4 Z¢"(0) x 0P+ [ (600 — €/ (0)h(x))N(dx)

EXAMPLE: ¢ = id?, predictable quadratic variation rate
o EXAMPLE: ¢ = €' — 1, expected growth rate of stock price

pid*oX — 52 + / X2|_|(dx)
R

i 1
ple—1)oX _ pX[Al | 502 + /(eX — 1= h(x))N(dx)
R
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Lévy process: classical vs new approach

Simplified
Stochastic . .
Sl @ Classical notation

Xe = Xo+ [y ads + [§ odWs + [§ [ <y XN(ds, dx) + [3 [, =1 xN(ds, dx)

N is a Poisson jump measure

1 the corresponding Lévy measure
N(dt,dx) = N(dt,dx) — M(dx)dt
a,0 €R

Drift calculation

@ Simplified calculus: just record the triplet
(bx[l] =a,cX =02 FX = I'I) .

@ The top equation translates to the trivial statement
Xt = XO + |d OXt

e not specific to Lévy processes
o completely measure-invariant
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Drift vs moments

Simplified
Stochastic

Calculus Cumulative drift (a.k.a. additive compensator)

goX—Bf(’XEJ/AOC

For Lévy processes we have

rift calculation oX X

Drift calcul BE _ b.go ¢

@ More generally, if £ o X is PlI, then for all t > 0

E[¢ 0 X,] = B>~

Higher moments: if PIl X has zero drift, then
E[(X: — Xo)] = B X

E[(X: — Xo)’] = B X



Summary of the key points so far

Simplified
Stochastic

Calculus The &-variation of X is given by the Emery formula

Easy to remember as 2nd order Taylor 4+ jumps £(AX)

Emery formula is measure-invariant — no need for predictable
characteristics of X

It is also universal — can be applied to any semimartingale X

Drift calculation

°
o Cumulative drift B¢°X is easily obtained from the Emery formula
@ £ can take many forms: powers, exponentials, logarithms, etc.

°

B&°X is immediately useful when computing moments of PIl X

NEXT STEPS
o We shall see how to redeploy the drift multiplicatively
@ This leads to the main applications

@ Also explains genesis of some useful £ functions



Samuelson’s insight into geometric BM - |

Simplified
Stochastic

e o Reading between the lines in Samuelson (1965),

ds
—t = pdt + odW, = E[S,] grows at rate 1 regardless of o!
> dX,

@ For a special semimartingale X, we have dX; = dBY + dMX

Samuelson's
insight

Theorem (C. & Ruf, 2023)

Let X be a special C—valued semimartingale with independent
increments. Then

E[&(X)e] = &(BX): regardless of MX !

o &(X) is the value of an asset / fund
@ X is the arithmetic rate of return of this asset / fund

o Expected growth rate = growth rate of expected value



Samuelson’s insight into geometric BM - |l

Simplified
Stochastic Previous results in this direction:

Calculus
o Kallsen & Muhle-Karbe (2010, P 3.12), &£(X) >0
o Cont & Tankov (2004, P 8.23), X Lévy
Without independent increments:

o Lépingle & Mémin (1978); assume additionally ABX # —1.
Then
Samuelson's

insight &(X)/E(BX) s a local martingale

Corollary (“Samuelson + Emery”)

Let X be a C—valued semimartingale with independent increments
such that & o X is special. Then

E[€(€ 0 X):] = &(B*°%);
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Yor formula and its generalizations

Simplified
Stochastic

Calculus In a one-period model, if S increases by 10%, how much will 2
increase by relative to its original value?

S? increases by 21% =1.12 -1 =2 x 0.1 + 0.1?
This is known as the Yor formula:

E(X)? =E02X + X, X])

@ We have learned much more in fact:

Yor formula, etc.

E(X)" = E(((1+id)" — 1) 0 X)

Similarly: if X increases by 0.1, then the percentage increase in
eX reads e%! — 1 &~ 10.5%, hence

e"X=%) — £((e" — 1) 0 X)

e E[&((e™¥ — 1) 0 X),] for u € R yields Lévy—Khintchin!



Samuelson + Emery + Yor = lots of applications

Simplified
Stochastic
Calculus

Classical financial setting
S > 0 is the stock price
Assume InS =: X is a given Lévy process (but could be any PII)

Characteristic triplet

(P[] = a, X =0® FX =N)

@ Specific values
Applications o = 0 1 o= O 15 I_I — 150N 0 0722
o o " 150
@ Moments
id oX id? o X 2 o' oX
bt =~ 0.1; p'¢ °* = 0.25%; —— =~0.
0.1; 0.25%; 005% 0.008

Excess kurtosis is 0.008 years expressed in appropriate units

0.008 years = 2 days = 16 hours = 960 minutes



Characteristic function

Simplified
Stochastic
Calculus Take v € C
- We want to evaluate E[e

vXt]

Easily obtain the universal representation

L(eX)=(e"¥-1)o X

@ This yields
v 1
Applications pee ") = av + 502V2 +/ (e"x —-1- VX1|X\§1) ﬂ(dX),
R
@ Exponential compensator (Lévy—Khintchin)

E[e"(Xf*X‘])] = E[&((e” — 1) 0 X):] = exp (bﬁ(evx)t)

vX . . .
o bL(™ )t is the cumulant generating function of X; — Xp



Maximization of exponential utility

Simp\iﬂe_d

s X=1InS
Cumulative yield on $1 investment R = L(eX) = (e — 1) 0 X
Fixed dollar investment X

Utility of terminal wealth —E[e~*"]

Need to find the drift of £L(e *F)

Use the composition rule to find

Applications £(e7)\R) = (ei)\id — 1) e} R = (ei)‘(eidil) — 1) o X

@ Evaluate the drift rate

— AR 0'2 — X _
pEET) — o+ = (A2 =)+ /R (e e =1) g 4 >\Xl|x\§1) M(dx).

Expected utility is — exp (bﬂ(efm)t>



Minimal entropy martingale measure

Simplified
Stochastic
Calculus

Denote optimal investment by A,
Density of MEMM dQ/dp is proportional to marginal utility e *+R
We want Q—drift of £(e"X) to get the c.f. of X; under Q

By Girsanov the same as P—drift of

E(evX) + [E(evX)’E(e—)\*R)]
= (" —1)o X + (e - 1)(e_>‘*(ex_1) —1)o X

Applications

Evaluate the P—drift rate of £ o X with £ = (e” — 1)e=*+(¢"-1)
2

VX
bé(e ) _ pEoX _ oy + % (V2 - 2)\*V)

+/ ((e"x —1)e (D _ vx1|X|§1) M(dx),
R



Change of measure in classical notation

Simplified
Stochastic

Calculus Lengthy and difficult
@ Find an explicit expression for log Z

log Z = 7/. /\*Jdst%/O 22 2ds+/ / —Au(eX — 1)N(ds, dx)
+/ / “Ae(eX—1) ( (1) 1>>I'I(dx)ds

Construct a new Brownian motion for the measure Q,

dWR = dW; + Awodt
Applications

@ New compensated Poisson jump measure
NQ(dt, dx) = N(dt, dx) + (1 - e*MeX*U) M(dx)dt

o Applebaum (2009), Theorem 5.2.12, Exercise 5.2.14
o Qksendal & Sulem (2007), Theorem 1.32 and Lemma 1.33
Substitute for W, N, and N in the original expression for X

More examples in this vein C. & Ruf (2021c)



Further applications (briefly)

Simplified
Stochastic

il @ Knowledge of drift has many applications outside PIl setting:
Cern PIDEs; HJB equations; Feynman—Kac; affine Riccati equations

@ In PII setting

Make up your own Lévy measure

Pricing of simple contracts log S or [£(S), L(S)]

But even plain vanilla options via Fourier transform

A variety of risk-neutral measures Esscher, MEMM, VOMM
(MMM), g-optimal, e.g.,

Applications ﬂ _ & (_a(eid — ]_) o X)T with 2 — b(eid—l)oX
dP g(B—a(eid—nox)T ) T pled—1)20x

o Correlation between &(n£(S)) and S” (equals 1 in B-S model)
exp (bn(eid—l)(e" id—1)0X) 1

\/exp (bn2(eid_1)zox) _ 1' exp (b(en id_1)zox) -1

1




Applications of multiplicative compensators

Simplified
Stochastic
Calculus

@ Proofs of moment bounds
e to show existence and uniqueness of BSDE solutions, e.g.,
Kazi-Tani et al. (2015), Lemma A.5
e to estimate variation distance of probability measures Kabanov
et al. (1986), Theorem 2.1
e to prove uniform integrability of local martingales, e.g., Lépingle

& Mémin (1978), Lemma 1.4; Ruf (2013), Corollary 5
o Filtration extension / shrinkage
o e.g., Nikeghbali & Yor (2006), Section 4; Kardaras (2015);
RGP Aksamit & Jeanblanc (2017), Chapter 5; Kardaras & Ruf
(2020), Section 5
@ Theory of Markov processes

e e.g., Itd & Watanabe (1965) Chapter 2; Chen et al. (2004),
Theorem 3.1




Why are variations a relatively unused concept?

Simplified
Stochastic

Calculus @ For continuous X, all variations are linear—quadratic, e.g.,
(€9 —1)o X = (id+1id*) o X

@ Expression £ o X arises often but in contexts that have nothing
to do with variations, e.g.,

o Goll & Kallsen (2000, Lemma A.8); S,5_ >0

iiu =("-1)oInS

e Mémin (1978, Proposition I-1); AY # —1

8- o(( )

o Doléans-Dade (1970, Théorgme 1) &(X) = el(t+id)oX

L(S) =

Applications




Emery formula for complex functions

Simplified

i Want C"-valued ¢ applied to C/~valued X
L Define lifts id : C™ — R2™ and id : C" — C2™

id = (Reidy, Imids, ..., Reid,,, Imid,,)
id = (idy,id}, ..., idp, id%)

@ Real derivatives ﬁ; Wirtinger derivatives D

€0 X = DE(0) X + 3D%(0) - [X, KT + (¢ — DE(O)) + 5%
= DE(0)- X + 3B76(0) [, XIF + (€ — DE(0)id) =

If £ is analytic or £, X real-valued, we can drop " and ~

Rl

@ Definition of “o” handles restricted domains, e.g.,
log(1 + id) o X makes sense if AX > —1



Example of a useful non-analytic representation

Simplified
Stochastic

il o Consider = |1+id|*—1foraeC
b @ On a sufficiently small neighbourhood of zero

[1+id]" —1=(1+id)?(1+id")? - 1.

@ Apply formal Wirtinger calculus to obtain, e.g.,
OxE = S+ T A +id) T 0= T(1+id) 3 (L 4+id)3
Applications ° Emery formula (AX # _1)

(I1+id[* —1)o X = a-ReX + %(a— 1)[Re X, Re X]¢ + %[ImX,ImX]C

+ ) (14 AX|* —1 - aReAX)
t<-



Mellin transform of signed stochastic exponential

Simplified
Stochastic

Calculus Cannot be tackled by existing tools
For fixed o € C define

fi = [id|*Ligzo;  f = |id]* (Ligso — Lia<o); &12 = fi2(1+id)—1
For all R—valued Y,
fa(E(Y)) = E(G120Y)

Observe f; + f, = (id")* and f, — f, = (id™)®
If Y is Pll, we get Mellin transforms of &(Y){ and &(Y);

Applications

Elf2(&(Y)e)] = 6(B%=°Y),

Lévy—Khintchin is of no use here

Apply this calculation to exponential Lévy MV portfolio



MV wealth as a signed stochastic exponential |

Simplified
Stochastic

Calculus @ Merton model log return X with triplet
(X0 = 4, 02,1 = Ad(0,7?))

o Parameter values p =0.2, 0 = 0.2, A =1, v = 0.1, and zero
interest rate

e Optimal wealth 1 — &(—a(e'® — 1) o X), where
S —
Y

Applications B b(eid_l)oX . H + 0—2/2 + )\(672/2 — 1) ~ 4 48
P BE X T 2\ (@ —2e7 A1)

@ Evaluate the exponential compensators
péiidia)oY _ pé(—a(e!~1)a)oX _ h(a);

plalid)o¥ _ pl-a( - 0@eX _  (0) — 21(a),



MV wealth as a signed stochastic exponential |l

Simplified
Stochastic ° Auxmary expressions

Calculus

h(a)= —aa (,LLJr %(1 + 3)02) + %042(30)2
+ /R (11— (e — 1)[* 1 yee_1).0 — D(x);

h(a) = /R 11— a(e* — 1)[*Lygex_11M(dx)

@ Evaluate the Mellin transforms

Applications o o 1 —+ 67212(0‘)7—
£1(0) = E |60V )" snon] = BT
1— ef2lz(a)T
(@) = E[|&(Y):]*1 =ehld)T——
g () =E[|E(YV)el*Lis(v)co}] = ¢ 5

@ Observe g_(0) = P(&(Y) < 0) =~ 2.2%



MV wealth as a signed stochastic exponential |ll

Simplified

Stochastic e Compute subdensities of log |&'(Y)| conditional on &(Y) = 0 by
Fourier inversion of conditional c.f.-s

_glin) Ly &)
o) =8 o) =G

@ The whole computation is structured and algorithmic

u€eR,

Applications



MV wealth as a signed stochastic exponential IV

Simplified
Stochastic
Calculus

. . 0
Applications 2 4 5 8 10 a2 10 8 6 4 2 0 2 4

Logarithm of the negative part Logarithm of the positive part

0

(2) Subdensity of log &(—a(e — 1) 0 X)7. (b) Subdensity of log &(—a(e — 1) o X)7.

Figure: Distribution of a signed stochastic exponential



MV wealth as a signed stochastic exponential V

Simplified
Stochastic
Calculus

Applications

0 .
-25 2 -15 -1 -0.5 0

Wealth

0.5 1

Figure: Density of the terminal wealth distribution 1 — &(—a(e — 1) 0 X)7.



Simplified
Stochastic

il @ We are collecting examples to include in a book

@ Let us know of other applications
o Could be the same maths in different context (e.g., Act. Sci.)

o New applications (e.g., recursive utility)

Applications



The calculus in a nutshell

Simplified
Stochastic . “w . . . "
o Make ¢ predictable: calculus of “predictable variations

Calculus

@ More accurately: semimartingale representations

@ Integral is a “linear variation”

¢-X=(Cid)o X

@ The same Emery formula applies
1
£oX =€(0)- X+ 2€"(0) X, XI° + ) (&(AX:) — £,(0)AX,)
t<-
@ Each of the three integrals must exist separately

The calculus

in a nutshell ° 6/(0) c L(X)
o £"(0) € L([X, X])
o {(AX) — ¢ (0)AX absolutely summable

"V Observe ¢f 1= f(X_ +id) — f(X_) yields the I1t6—Meyer formula

efoX = F/(X_)- x+%f”(x,) XIS (F(Xe) —F(Xem )~ F (Xem ) AXe)
t<-



Universal representations

Simplified
Stochastic

Calculus @ Want the calculus to be rigorous, flexible, and easy to use
@ Need a rich class of £, where nothing strange can happen

Definition (Universal representing functions)

31 denotes the set of predictable functions & such that, P-a.s.,
(i) &(0) =0, for all £ > 0.
(i) x — &:(x) is twice real-differentiable at zero, for all t > 0.
(iii) DE(0) and D?¢(0) are locally bounded.
The calculus (iv) There is a predictable locally bounded process K > 0 such that
ap 1) 25(0)x!

is locally bounded.
0<|x| <Yk x|




Key properties

Simplified
Stochastic

Caleulus @ Sl is closed under common operations

@ Starting from X = Xp 4+ idoX and using only

e composition, i.e., the “o" operation with functions in 4l;
Yo (£oX) =)o X
o change of variables by means of (deterministic) C? functions
f(X) = f(Xo) + (F(X= +id) — f(X2)) o X;
o locally bounded integration;
¢-(€oX)=(EoX

every result will be of the form 7 o X for some n € 4l

Key properties

@ In practice, we never leave LI, so no checking necessary



Example: how to derive a new representation

Simplified
Stochastic
Calculus

Suppose X is log return
Cumulative rate of return is then £(eX) := e %~ .eX
Let us compute [£(eX), £(eX)]
Proceed in steps

o Change of variables

X =& 4 (T X))o X
o Locally bounded integration

L) =X =e (T X )oX=("-1)0 X

Key properties

o Composition
[£(eX), £(e)] = id* 0 L(e¥) = (¥ — 1)? 0 X

@ Instead of manipulating complicated stochastic expressions X
one performs simple algebraic operations v/




Beyond universal representations

Simplified
Stochastic

Caleulus @ One can move beyond universal representations
@ J(X) are functions specific to X such that £ o X makes sense
e E.g., integrand ¢ unbounded: (id ¢ 4 but ¢id € J(X)

@ Improvements to the Emery formula: better jump integral x, no
differentiability at predictable jump times

@ General composition theorem: Let ¢ € J(X), ¥ € J(§ o X), and
W'(0) € L(€"(0) - [X, X]9) N L ((§ = €(0) id) )
Then ¢(&) € 3(X) and we have

Po(foX)=v(§)oX

Key properties



Beyond universal representations

Simplified
Stochastic

Calculus @ One can move beyond universal representations
@ J(X) are functions specific to X such that £ o X makes sense
e E.g., integrand ¢ unbounded: (id ¢ 4 but ¢id € J(X)

@ Improvements to the Emery formula: better jump integral x, no
differentiability at predictable jump times

@ General composition theorem: Let ¢ € J(X), ¥ € J(§ o X), and
W'(0) € L(€"(0) - [X, X]9) N L ((§ = €(0) id) )
Then ¢(&) € 3(X) and we have

Po(foX)=v(§)oX

Key properties



Beyond universal representations

Simplified
Stochastic

Calculus @ One can move beyond universal representations
@ J(X) are functions specific to X such that £ o X makes sense
e E.g., integrand ¢ unbounded: (id ¢ 4 but ¢id € J(X)

@ Improvements to the Emery formula: better jump integral x, no
differentiability at predictable jump times

@ General composition theorem: Let ¢ € J(X), v € 3(§ o X), and
W'(0) € L(€"(0) - [X, X]9) N L ((§ = €(0) id) )
Then ¢(&) € 3(X) and we have

Key properties

o(§oX)=1(§)oX



Beyond universal representations

Simplified
Stochastic

Calculus @ One can move beyond universal representations
@ J(X) are functions specific to X such that £ o X makes sense
e E.g., integrand ¢ unbounded: (id ¢ 4 but ¢id € J(X)

@ Improvements to the Emery formula: better jump integral x, no
differentiability at predictable jump times

@ General composition theorem: Let ¢ € J(X), ¥ € J(§ o X), and
W'(0) € L(€"(0) - [X, X]T) N L((§ = €(0) id) )
Then ¢(&) € 3(X) and we have

Po(foX)=v(§)oX

Key properties



Beyond universal representations

Simplified
Stochastic

Calculus @ One can move beyond universal representations
@ J(X) are functions specific to X such that £ o X makes sense
e E.g., integrand ¢ unbounded: (id ¢ 4 but ¢id € J(X)

@ Improvements to the Emery formula: better jump integral x, no
differentiability at predictable jump times

@ General composition theorem: Let ¢ € J(X), ¥ € J(§ o X), and
¥'(0) € L(€"(0) - [X, X]) N L((€ — €'(0) id) x )
Then ¢(&) € 3(X) and we have

Po(foX)=v(§)oX

Key properties



Beyond universal representations

Simplified
Stochastic

Caleulus @ One can move beyond universal representations
@ J(X) are functions specific to X such that £ o X makes sense
e E.g., integrand ¢ unbounded: (id ¢ 4 but ¢id € J(X)

@ Improvements to the Emery formula: better jump integral x, no
differentiability at predictable jump times

@ General composition theorem: Let ¢ € J(X), ¥ € J(§ o X), and
W'(0) € L(€"(0) - [X, X]9) N L ((§ = €(0) id) )
Then ¢(&) € 3(X) and we have

Po(foX)=v(§)oX

Key properties

e £ = (id v/ generalizes associative property of Sl



Better jump integral

Simplified
Stochastic [3 Pure-jump semimartingales. Bernoulli 27(4), 2021, 2624-2648,
arXiv:1909.03020.

@ The Emery formula features one absolutely convergent sum in
contrast to one non-absolutely convergent integral

¥ There is a way to sum jumps at predictable times non-absolutely

@ This corresponds to o—localizing the absolutely convergent sum

@ The new summation can sometimes be done at inaccessible
times but it always works at predictable times

@ The calculus at predictable times is super well-behaved

@ New semimartingale decomposition

Better jump X = XO + Xxac 4 Xdp,

integral
e X% is a quasi-left-continuous semimartingale
o X% equals the sum of its jumps at predictable times

Furthermore, [XqC,Xdp] =0.


https://arxiv.org/abs/1909.03020

Consequences for representations

Simplified
Stochastic

Sl @ Suppose Tx exhausts jumps of X9 and let

Lo XP = 3" & (AX,)

TETX
o Define £ 0 X9 by the Emery formula (with * instead of %)
o Let £0X = &0 X%+ £oXIP
e £o X is special iff both £ 0 X9 and & o X9 special
@ Simplifies drift calculations

Bgoxdp _ Z ET_[&_(AXT)]

Better jump TETx
integral




Pedagogical opportunities, continuous X

Simplified
Stochastic

Sl For continuous X it is common to write

df(X;) = f/(Xe)d X + %f”(Xt)(dXt)2

In Emery’s notation literally (dX;)? = d[X, X];
McKean (1969) suggested the heuristics dW,dt = 0, (dt)?> =0
Better rule: (dX;)® =0, (dX;)* = 0 for any continuous X

Why useful: for continuous X

£oX = (£(0)id+1£7(0)id®) o X

When composing linear-quadratic functions, max order is 4

To get again linear-quadratic, ignore orders 3 and 4

Pedagogical

opportunities

Also useful for small jumps asymptotics



Final quotes

Simplified
Stochastic
Calculus

“Thus the parts of probability theory most relevant to [the question
addressed here] are those results, usually abstract in appearance and
French in origin, which are invariant under substitution of an

equivalent measure.” — Harrison & Pliska (1981)

“Because in mathematics we pile inferences upon inferences, it is a

good thing whenever we can subsume as many of them as possible

under one symbol.” — Carl Jacobi (1804-1851)
source Kneser (1907) transl. Remmert (1991)

“As often happens in the history of science, the simple ideas are the
hardest to achieve; simplicity does not come of itself but must be

Final quotes created.” — Truesdell (1960)
comment on the work of Leonhard Euler
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